Non-orientable regular maps of Euler characteristic equal to the negative of an odd prime power

Jozef Širáň

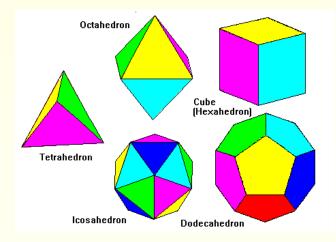
OU and STU

Joint work with M. Conder, N. Gill and I. Short

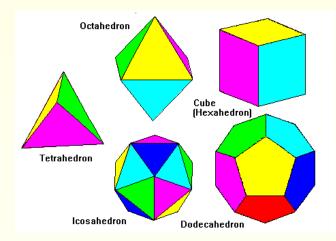
27th October 2014

Jozef Širáň OU and STU Joint work witlNon-orientable regular maps of Euler characte

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?



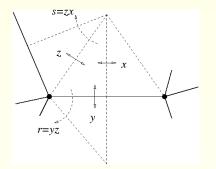
Regular maps are generalisations of Platonic maps to arbitrary surfaces.

イロト 不得 トイヨト イヨト 二日

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A map is regular if its automorphism group is regular on flags.

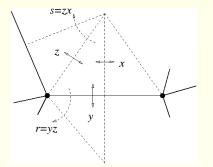
A map is regular if its automorphism group is regular on flags.



3

___ ▶

A map is regular if its automorphism group is regular on flags.

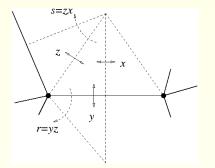


$$Aut(M) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

A map is regular if its automorphism group is regular on flags.



 $Aut(M) = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$

Conversely, every group with such a presentation determines a regular map.

- 4 同 1 4 回 1 4 回 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Sphere:

Sphere: Platonic maps (and ∞ of trivial maps)

Sphere:Platonic maps (and ∞ of trivial maps)Projective plane:Petersen, K_4 , duals (and ∞ of trivial maps)

Sphere: Torus:

Platonic maps (and ∞ of trivial maps) **Projective plane:** Petersen, K_4 , duals (and ∞ of trivial maps)

イロト 不得 トイヨト イヨト 二日

Sphere: Torus:

Platonic maps (and ∞ of trivial maps) **Projective plane:** Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps

イロト イポト イヨト イヨト 二日

Sphere: Projective plane: Torus: Klein bottle:

Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps

イロト 不得下 イヨト イヨト

Sphere: Projective plane: Torus: Klein bottle: Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

イロト 不得下 イヨト イヨト

Sphere: Torus: Klein bottle:

Platonic maps (and ∞ of trivial maps) **Projective plane:** Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

If $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$ gives a regular map of type (k, m) on a compact surface with Euler char. χ , then

$$|G| = \frac{4km}{km - 2k - 2m}(-\chi)$$

・ロット (雪) (日) (日) (日)

Sphere: Projective plane: Torus: Klein bottle:

Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

If $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$ gives a regular map of type (k, m) on a compact surface with Euler char. χ , then

$$|G| = \frac{4km}{km - 2k - 2m}(-\chi)$$

Every surface with $\chi < 0$ supports just a finite number of regular maps.

Sphere: Projective plane: Torus: Klein bottle:

Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

If $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$ gives a regular map of type (k, m) on a compact surface with Euler char. χ , then

$$|G| = \frac{4km}{km - 2k - 2m}(-\chi)$$

Every surface with $\chi < 0$ supports just a finite number of regular maps.

State-of-the-art in the classification of regular maps by 2001:

Sphere: Projective plane: Torus: Klein bottle:

Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

If $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$ gives a regular map of type (k, m) on a compact surface with Euler char. χ , then

$$|G| = \frac{4km}{km - 2k - 2m}(-\chi)$$

Every surface with $\chi < 0$ supports just a finite number of regular maps.

State-of-the-art in the classification of regular maps by 2001: By hand for $\chi \ge -8$ [numerous authors]

Sphere: Projective plane: Torus: Klein bottle: Platonic maps (and ∞ of trivial maps) Petersen, K_4 , duals (and ∞ of trivial maps) Infinitely many *non*trivial regular maps No regular map at all!

If $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle$ gives a regular map of type (k, m) on a compact surface with Euler char. χ , then

$$|G| = \frac{4km}{km - 2k - 2m}(-\chi)$$

Every surface with $\chi < 0$ supports just a finite number of regular maps.

State-of-the-art in the classification of regular maps by 2001: By hand for $\chi \ge -8$ [numerous authors] A computer-assisted classification for $\chi \ge -28$ [Conder, Dobcsányi 2001]

• $\chi = -p$ for every prime *p* [Breda, Nedela,Š 2005]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]

- $\chi = -p$ for every prime *p* [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]
- $\chi = -3p$ [Conder, Nedela, Š 2012]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]
- $\chi = -3p$ [Conder, Nedela, Š 2012]

Classification for some families of orientably regular maps with $\chi = 2 - 2g$:

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]
- $\chi = -3p$ [Conder, Nedela, Š 2012]

Classification for some families of orientably regular maps with $\chi = 2 - 2g$:

• Orientably regular maps M with g - 1 relatively prime to $|Aut^+(M)|$ [Conder, Tucker, Š 2010]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]
- $\chi = -3p$ [Conder, Nedela, Š 2012]

Classification for some families of orientably regular maps with $\chi = 2 - 2g$:

- Orientably regular maps M with g 1 relatively prime to $|Aut^+(M)|$ [Conder, Tucker, Š 2010]
- Orientably regular maps M with g 1 a prime dividing $|Aut^+(M)|$ [Conder, Tucker, Š 2010]

- $\chi = -p$ for every prime p [Breda, Nedela,Š 2005]
- $\chi = -2p$ and orientable + 'large' [Belolipetsky, Jones 2005]
- $\chi = -2p$ and orientable, all [Conder, Tucker, Š 2010]
- $\chi = -p^2$ [Conder, Potočnik, Š 2010]
- $\chi = -3p$ [Conder, Nedela, Š 2012]

Classification for some families of orientably regular maps with $\chi = 2 - 2g$:

- Orientably regular maps M with g 1 relatively prime to $|Aut^+(M)|$ [Conder, Tucker, Š 2010]
- Orientably regular maps M with g 1 a prime dividing $|Aut^+(M)|$ [Conder, Tucker, Š 2010]

Classification for 'small' genera carried over to $\chi \ge -600$ with the help of more powerful computational methods [Conder 2013].

Gaps in the nonorientable genus spectrum

Gaps in the nonorientable genus spectrum

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

・ロット (雪) (日) (日) 日

Gaps in the nonorientable genus spectrum

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Known infinite families of gaps:

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Known infinite families of gaps:

• $\chi = -p$ for primes $p \equiv 1 \mod 12$, $p \neq 13$ [Breda, Nedela, Š 2005]

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Known infinite families of gaps:

- $\chi = -p$ for primes $p \equiv 1 \mod 12$, $p \neq 13$ [Breda, Nedela, Š 2005]
- $\chi = -p^2$ for all primes p > 7 [Conder, Potočnik, Š 2010]

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Known infinite families of gaps:

- $\chi = -p$ for primes $p \equiv 1 \mod 12$, $p \neq 13$ [Breda, Nedela, Š 2005]
- $\chi = -p^2$ for all primes p > 7 [Conder, Potočnik, Š 2010]
- $\chi = -3p$ for all p > 11 such that $p \equiv 3 \mod 4$ and $p \not\equiv 55 \mod 84$ [Conder, Nedela, Š 2012]

Well known: For every g > 0 there exists a regular map on an orientable surface of genus g; for instance, of type (4g, 4g).

A gap is a value of χ for which a nonorientable surface of Euler characteristic χ carries no regular map at all.

Known infinite families of gaps:

- $\chi = -p$ for primes $p \equiv 1 \mod 12$, $p \neq 13$ [Breda, Nedela, Š 2005]
- $\chi = -p^2$ for all primes p > 7 [Conder, Potočnik, Š 2010]
- $\chi = -3p$ for all p > 11 such that $p \equiv 3 \mod 4$ and $p \not\equiv 55 \mod 84$ [Conder, Nedela, Š 2012]

More than 3/4 of values of χ are non-gaps [Conder, Everitt 1995].

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

For a regular map M with odd χ , Aut(M) has dihedral Sylow 2-groups.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

For a regular map M with odd χ , Aut(M) has dihedral Sylow 2-groups.

[Gorenstein, Walter 1965]: If G is a group with dihedral Sylow 2-subgroups and if O is the odd part of G, then G/O is isomorphic to either (a) a Sylow 2-subgroup of G, or

(b) the alternating group A_7 , or else

(c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.

For a regular map M with odd χ , Aut(M) has dihedral Sylow 2-groups.

[Gorenstein, Walter 1965]: If G is a group with dihedral Sylow 2-subgroups and if O is the odd part of G, then G/O is isomorphic to either (a) a Sylow 2-subgroup of G, or (b) the alternating group A₇, or else (c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.

Theorem 1. Let G be the automorphism group of a regular map with χ odd.

For a regular map M with odd χ , Aut(M) has dihedral Sylow 2-groups.

[Gorenstein, Walter 1965]: If G is a group with dihedral Sylow 2-subgroups and if O is the odd part of G, then G/O is isomorphic to either

- (a) a Sylow 2-subgroup of G, or
- (b) the alternating group A_7 , or else
- (c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.

Theorem 1. Let G be the automorphism group of a regular map with χ odd. If G is not solvable, then G is isomorphic to A_7 , PSL(2, q) or PGL(2, q), q an odd prime power.

For a regular map M with odd χ , Aut(M) has dihedral Sylow 2-groups.

[Gorenstein, Walter 1965]: If G is a group with dihedral Sylow 2-subgroups and if O is the odd part of G, then G/O is isomorphic to either

- (a) a Sylow 2-subgroup of G, or
- (b) the alternating group A_7 , or else
- (c) a subgroup of Aut(PSL(2,q)) containing PSL(2,q), q odd.

Theorem 1. Let G be the automorphism group of a regular map with χ odd. If G is not solvable, then G is isomorphic to A_7 , PSL(2, q) or PGL(2, q), q an odd prime power. Moreover, if $\chi = -r^{\ell}$ for some odd prime r, then G is isomorphic to PSL(2, q) or PGL(2, q).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Theorem 2. For any regular map M of Euler characteristic $\chi < 0$ and for any odd integer s there is a smooth cover \tilde{M} of M that has Euler characteristic $s^{1-\chi}\chi$.

Theorem 2. For any regular map M of Euler characteristic $\chi < 0$ and for any odd integer s there is a smooth cover \tilde{M} of M that has Euler characteristic $s^{1-\chi}\chi$.

Theorem 3. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PSL(2, q)$ for some prime power q, then one of the following cases occur:

r	q	(k, m)
3	5	(5, 5)
3	5	(3, 15)
7	13	(3,13)
13	13	(3, 7)

Theorem 2. For any regular map M of Euler characteristic $\chi < 0$ and for any odd integer s there is a smooth cover \tilde{M} of M that has Euler characteristic $s^{1-\chi}\chi$.

Theorem 3. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PSL(2, q)$ for some prime power q, then one of the following cases occur:

r	q	(k, m)
3	5	(5, 5)
3	5	(3, 15)
7	13	(3,13)
13	13	(3,7)

Note: In each case there exist infinitely many examples (by Theorem 2).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

• N is an r-group, where either r = p or r divides one of q - 1, q + 1,

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

- N is an r-group, where either r = p or r divides one of q 1, q + 1, and
- $G/N \simeq (PSL(2,q) \times Z_t).2$, where t is odd and coprime to r.

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = \ldots = 1 \rangle.$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of:

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q-1, q+1\};$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q - 1, q + 1\};$ (4) q = p, $r \mid p - 1$ and $\{k', m'\} = \{tp, p + 1\};$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q-1, q+1\};$ (4) $q = p, r \mid p-1$ and $\{k', m'\} = \{tp, p+1\};$ (5) $q = p, r \mid p+1$ and $\{k', m'\} = \{tp, p-1\}.$

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q-1, q+1\};$ (4) $q = p, r \mid p-1$ and $\{k', m'\} = \{tp, p+1\};$ (5) $q = p, r \mid p+1$ and $\{k', m'\} = \{tp, p-1\}.$ (3): 2;

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q-1, q+1\};$ (4) $q = p, r \mid p-1$ and $\{k', m'\} = \{tp, p+1\};$ (5) $q = p, r \mid p+1$ and $\{k', m'\} = \{tp, p-1\}.$ (3): 2; (4): ∞ , e.g. for r = 3, p = 7,

Theorem 4. Let G be the automorphism group of a regular map of type (k, m) with $\chi = -r^{\ell}$ for an odd prime r. If $G/O \simeq PGL(2, q)$ for some prime power $q = p^{a}$, then G has a normal subgroup N such that

N is an r-group, where either r = p or r divides one of q − 1, q + 1, and
G/N ≃ (PSL(2, q) × Z_t).2, where t is odd and coprime to r.

Recall: $G = \langle x, y, z | x^2 = y^2 = z^2 = (yz)^k = (zx)^m = (xy)^2 = ... = 1 \rangle$. Let k' and m' be orders of (yz)N and (zx)N in G/N.

Theorem 5. The possible values of r, p, q, k', m' and t satisfy one of: (1) r = p and $\{k', m'\} = \{t(q+1)/2, q-1\};$ (2) r = p and $\{k', m'\} = \{t(q-1)/2, q+1\};$ (3) r = p, t = 1 and $\{k', m'\} = \{q-1, q+1\};$ (4) $q = p, r \mid p-1$ and $\{k', m'\} = \{tp, p+1\};$ (5) $q = p, r \mid p-1$ and $\{k', m'\} = \{tp, p-1\}.$ (3): 2; (4): ∞ , e.g. for $r = 3, p = 7, t = (3^a + 8)/77, a \equiv 21 \mod 30.$

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

イロト 不得下 イヨト イヨト

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

• \overline{G} has a normal 2-complement;

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

- \overline{G} has a normal 2-complement;
- $\overline{G} \equiv A_7;$

く 戸 ト く ヨ ト く ヨ ト

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;
- $\overline{G} \simeq A_7.2;$

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2, q) \leq H \leq P\Gamma L(2, q)$;
- $\overline{G} \simeq A_7.2;$
- $\overline{G} \simeq PSL(3,3);$

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;
- $\overline{G} \simeq A_7.2;$
- $\overline{G} \simeq PSL(3,3);$
- $\overline{G} \simeq M_{11};$

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;
- $\overline{G} \simeq A_7.2;$
- $\overline{G} \simeq PSL(3,3);$
- $\overline{G} \simeq M_{11};$
- \overline{G} has a normal subgroup K such that $K \simeq SL(2,q)$ and \overline{G}/K is cyclic, of order divisible by 4.

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;
- $\overline{G} \simeq A_7.2;$
- $\overline{G} \simeq PSL(3,3);$
- $\overline{G} \simeq M_{11};$
- \overline{G} has a normal subgroup K such that $K \simeq SL(2, q)$ and \overline{G}/K is cyclic, of order divisible by 4.

A wealth of results for orientably regular maps with $\chi = -2^b$: Gill [2014].

- 4 同 6 4 日 6 4 日 6

Theorem 6. Let G be the group of orientation-preserving automorphisms of an orientably regular map with $\chi \equiv 2 \mod 4$. For $\overline{G} = G/O$ we have:

- *G* has a normal 2-complement;
- $\overline{G} \equiv A_7;$
- $\overline{G} \equiv H$ for some H such that $PSL(2,q) \leq H \leq P\Gamma L(2,q)$;
- $\overline{G} \simeq A_7.2;$
- $\overline{G} \simeq PSL(3,3);$
- $\overline{G} \simeq M_{11};$
- \overline{G} has a normal subgroup K such that $K \simeq SL(2, q)$ and \overline{G}/K is cyclic, of order divisible by 4.

A wealth of results for orientably regular maps with $\chi = -2^b$: Gill [2014]. THANK YOU.

(人間) トイヨト イヨト